Designing energy efficient buildings with WUFI & WUFI Plus Software

Achilles Karagiozis, OC Director of Building Science
Florian Antretter, IBP FGH
Andre Desjarlais, Group Leader ORNL
Moisture Problems

Moisture Designs are needed that minimize the risk for damage
Introduction – Moisture Safety Factor

Dynamic moisture balance

Safe Storage Capacity

Indoor air loads.
- air convection
- vapor diffusion

Wetting

Rain penetration
Ext. condensation

Built-in

Drying

Drainage
Evaporation-Diffusion
Dynamic moisture balance

Safe Storage Capacity

Wetting

Drying

To avoid failure or damage --- Maximize the drying potential!
Moisture is Dynamic
Tools needed to:

- Climate Data
- Construction Data
- Material Data

Hygro-thermal Envelope Simulation (WUFI)

Service Performance (biological, chemical, Mechanical resistance)
Limitations of WUFI 1-D

- It is 1-D
- User Input for interior boundary conditions
 - Need to specify (T, & RH for every hour)
 - No impact on other components
 (# of windows, facing orientation, etc)
- No air flow

Used Primarily for envelope analysis
Unique Capabilities for Whole Building Analysis
Room

Heat balance

\[\rho \cdot c \cdot V \cdot \frac{dT_i}{dt} = \dot{Q}_{\text{component}} + \dot{Q}_{\text{window}} + \dot{Q}_{\text{IWQ}} + \dot{Q}_{\text{vent}} + \dot{Q}_{\text{RLT}} \]

Moisture balance

\[V \cdot \frac{dc_i}{dt} = \dot{W}_{\text{component}} + \dot{W}_{\text{vent}} + \dot{W}_{\text{IFQ}} + \dot{W}_{\text{RLT}} \]
Heat loads - occupants
Moisture loads - daily routine

Water Vapour, litres

- 4 Occupants / Day
- Clothes drying inside / Day
- Floor Washing 12 m²
- Cooking on Gas Stove
- Gas Refrigerator / Day
- Cooking (3 Meals)
- Dishwashing (3 Meals)
- 5 Average Size Plants / Day
- per Shower
- per Bath

Moisture loads - daily routine
CO2 loads - occupants

<table>
<thead>
<tr>
<th>Activity</th>
<th>W/m²</th>
<th>Met</th>
<th>CO₂/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reclining</td>
<td>46</td>
<td>0.8</td>
<td>13.6</td>
</tr>
<tr>
<td>Seated relaxed</td>
<td>58</td>
<td>1.0</td>
<td>17</td>
</tr>
<tr>
<td>Standing relaxed</td>
<td>70</td>
<td>1.2</td>
<td>20.4</td>
</tr>
<tr>
<td>Seated activity (office, dwelling, school, laboratory)</td>
<td>70</td>
<td>1.2</td>
<td>20.4</td>
</tr>
<tr>
<td>Standing, light activity (shopping, laboratory, light industry)</td>
<td>93</td>
<td>1.6</td>
<td>0</td>
</tr>
<tr>
<td>Teacher</td>
<td>96</td>
<td>1.6</td>
<td>27.2</td>
</tr>
<tr>
<td>Standing, medium activity (shop assistant, domestic work)</td>
<td>115</td>
<td>2.0</td>
<td>27.2</td>
</tr>
<tr>
<td>Building industry - Brick laying (Block of 16.3 kg)</td>
<td>125</td>
<td>2.2</td>
<td>34</td>
</tr>
<tr>
<td>Washing dishes standing</td>
<td>145</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>Domestic work - raking leaves on the lawn</td>
<td>170</td>
<td>2.9</td>
<td>37.4</td>
</tr>
<tr>
<td>Gymnastics</td>
<td>319</td>
<td>5.5</td>
<td>42.5</td>
</tr>
<tr>
<td>Aerobic Dancing</td>
<td>348</td>
<td>6.0</td>
<td>49.3</td>
</tr>
<tr>
<td>Basketball</td>
<td>348</td>
<td>6.0</td>
<td>49.3</td>
</tr>
<tr>
<td>Swimming</td>
<td>348</td>
<td>6.0</td>
<td>49.3</td>
</tr>
<tr>
<td>Sports - Ice skating, 18 km/h</td>
<td>360</td>
<td>6.2</td>
<td>93.5</td>
</tr>
<tr>
<td>Agriculture - digging with a spade (24 lifts/min,)</td>
<td>380</td>
<td>6.5</td>
<td>102</td>
</tr>
<tr>
<td>Sports - Running in 15 km/h</td>
<td>550</td>
<td>9.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Results 6. run

Case 1/Zone 1: Main results

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating period [d]</td>
<td>190,3</td>
<td>245</td>
</tr>
<tr>
<td>Cooling period [d]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heating load [kWh]</td>
<td>6030,3</td>
<td>159,94</td>
</tr>
<tr>
<td>Cooling load [kWh]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Humidification load [kg]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dehumidification load [kg]</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Min/Max/Mean Values

<table>
<thead>
<tr>
<th>Specification</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner temperature [°C]</td>
<td>20</td>
<td>33,9</td>
<td>21,8</td>
</tr>
<tr>
<td>Inner relative humidity [%]</td>
<td>67,2</td>
<td>100</td>
<td>87,4</td>
</tr>
<tr>
<td>Heating power [kW]</td>
<td>0</td>
<td>4,8</td>
<td>0,9</td>
</tr>
<tr>
<td>Cooling power [kW]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Humidification [kg/h]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dehumidification [kg/h]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner temperature [°C]</td>
<td>20</td>
<td>34,1</td>
<td>21,2</td>
</tr>
<tr>
<td>Inner relative humidity [%]</td>
<td>14,8</td>
<td>30,3</td>
<td>48,4</td>
</tr>
<tr>
<td>Heating power [kW]</td>
<td>0</td>
<td>7,4</td>
<td>1,8</td>
</tr>
<tr>
<td>Cooling power [kW]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Humidification [kg/h]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dehumidification [kg/h]</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Comfort Performance
This standard amount of insulation required to keep a resting person warm in a windless room at 70 °F (21.1 °C) is equal to one clo.
Simplified approach

Knoxville, TN

Annual

V=375 m³

Indoor Humidity [%]

Air Change Rate [h⁻¹]

- no M.P.
- 200 g/h
- 500 g/h
- 1000 g/h
Simplified approach using 1-D Analysis

Knoxville, TN

Annual

Monthly

V=375 m³

V=375 m³

n=0.5 ACH
M.P.=500 g/h

Indoor Humidity [%]

Air Change Rate [h⁻¹]

Month
What choices to we have with 1-D?
Boundary Conditions in WUFI

Temperature / Relative Humidity

Air-conditioning system
- **AC Type**: AC with Dehumidification
- **Floating indoor temperature shift [°C]**: 2.8
- **Set point for heating [°C]**: 21.1
- **Set point for cooling [°C]**: 23.9
- **R.H. control setpoint [%]**: 50

Relative Humidity
- **Moisture Generation Rate**
 - **Number of bedrooms**: 5
 - **Jetted tub without exhaust fan**: False
 - **User Defined Moisture Generation Rate**: False
 - **Moisture Generation Rate [kg/s]**: 1.80E-04
- **Air Exchange Rate**
 - **Standard construction**: True
 - **Air Exchange Rate [1/h]**: 0.2
 - **Building volume [m³]**: 375

Last Calculation: 29.11.2007
Boundary Conditions in WUFI
Boundary Conditions in WUFI

Knoxville, TN

Moisture Content in the OSB Board [M-%]

Time since 1st October [years]

- Sine
- EN 13788
- EN 15026
- SPC 160 - heating 2 rooms
- SPC 160 - heating 5 rooms
- SPC 160 - heating AC
- SPC 160 - heating AC with Dehum.
Boundary Conditions in WUFI

Charleston, SC

Moisture Content in the OSB Board [M.-%]

Time since 1st October [years]

- Sine
- EN 13788
- EN 15026
- SPC 160 - heating 2 rooms
- SPC 160 - heating 5 rooms
- SPC 160 - heating AC
- SPC 160 - heating AC with Dehum.
Hygro-thermal Envelope Simulation (WUFI)

Whole Building Simulation

Energy Consumption, Comfort

Service Performance (biological, chemical, Mechanical resistance)

Climate Data

Construction Data

Material Data
Magic Circles

- Ventilation
- Moisture Sources
- Mold Growth
- Energy
- Building Science
- Comfort
Conclusions

• Component building envelope modeling is important but there is risks with assumptions of indoor loads.

• Energy efficiency strategies need to be evaluated (Moisture Control). Adding higher R-values require additional attention to moisture control designs.

• Integrated whole building (HAM) software are very valuable to the designer.

• Comfort is more desirable and now more quantifiable.